

Machine Learning INTRODUCTION

Mike "Perk" Perkins Adjunct Professor Carnegie Mellon Africa

African Workshop on SciTinyML

AI: The Rational Agent Approach

Carnegie Mellon Africa

obstacles

GOAL

Artificial Intelligence: the study of human made rational agents

Agent

Something that <u>acts</u>
 ✓ Operates autonomously
 ✓ Perceives the environment
 ✓ Adapts to change

Rational agent

One that acts to achieve the best <u>expected</u> outcome in the face of uncertainty

obstacles

B

obstacles

Machine Learning

<u>Machine Learning</u>: The ability of a computer to learn without being explicitly programmed

- Major Aspects of ML include
 - Processing data to detect and extrapolate patterns
 - Adapting as new data becomes available

AI: the study of rational agents

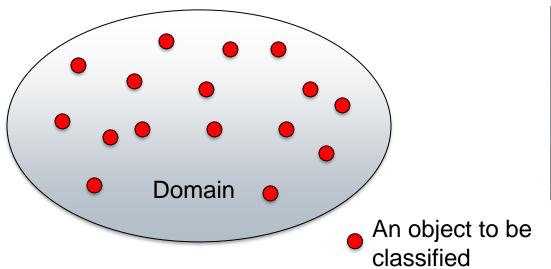
<u>ML</u>: the study of autonomous computer learning

<u>Neural Networks (Deep Learning)</u>: ML based on layers of biologically-inspired "artificial neurons". Learning typically occurs from very large data sets

Machine Learning—Classification

Consider a set of objects that we wish to classify

- Example: the set could be the passengers on the Titanic
- Potential passenger feature vector
 - ✓ (Gender, Age, FareClass, Deck)



Who survived?

We'll call the set of objects to classify the domain

Binary Classification

- Assign every domain object to one of two classes
 - Titanic passengers either *survived* or *perished*
- Other domains and binary classification tasks
 - Images of Faces
 - ✓ classify as *male* or *female*, *old* or *young*, etc.
 - Emails
 - ✓ classify as *spam* or *ham, personal* or *work,* etc.
 - Customer financial records
 - \checkmark classify customer as *likely* or *unlikely* to default on a loan
 - Medical assessments
 - ✓ classify patient as *sick* or *healthy*

Multi-class Classification

- Objects can be assigned to more than two classes
- Some domains and multi-class classification tasks
 - Images of Faces
 - ✓ classify as young-male, young-female, old-male, old-female
 - Images of hand-written numerals
 ✓ classify as the numbers {0, 1, 2, ..., 9}
 - Traffic-related measurements

✓ classify commute time as *short*, *average*, or *long*

Extracting Features from Objects

Carnegie Mellon Africa

- The objects to classify are often very complex
- Simplification
 - Analyze the objects to extract a set of <u>features</u>
 - Group the features together into a <u>feature vector</u>
- We refer to a feature vector as an <u>instance</u>
 - We call the set of all possible feature vectors the <u>instance</u> <u>space</u>

Example Titanic feature vector: (Gender, Age, FareClass, Deck)

Feature Vector Example

- Problem—classify people as male or female
- Components of feature vector
 - Height, weight, length of hair, length of nose, length of foot
 - (H, W, L_h, L_n, L_f)
- The instance space
 - The set of all possible feature vectors for a human

In this example the instance space is infinite

- Somehow we obtain a labeled set of actual feature vectors
 - Labeled means we know the class for each feature vector
 - We call this set the *Training Set*

Example

- (*H*, *W*, L_h , L_n , L_f) = (2m, 75Kg, 7cm, 4cm, 20cm) \rightarrow *Male*
- $(H, W, L_h, L_n, L_f) = (1.6m, 50Kg, 15cm, 3cm, 16cm) → Female$ • etc.

The Training Set

The training set is a set of ordered pairs

$$\mathcal{T} = \{(\underline{\mathbf{x}}_i, l(\underline{\mathbf{x}}_i))\}$$

- Here <u>x</u>_i is an instance (feature vector) and *l()* is the <u>true</u> labeling function
- The training set is <u>samples</u> of the true classification function we want to learn
 - The training set does NOT contain every vector from the instance space (which is often infinite)
- Ideally, the training set is large

Supervised Learning

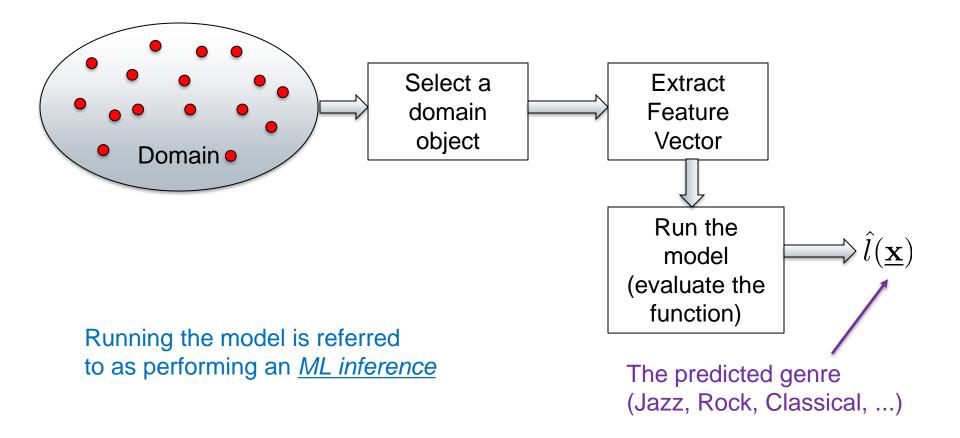
Supervised learning is using a labeled training set to learn a <u>function</u> for mapping instances to classes

- The function learned, $\hat{l}(\underline{x})$, is called a *model*
- The function learned can be used to *predict* the class of instances that are <u>not</u> in the training set
- Hopefully,

 $\hat{l}(\underline{\mathbf{x}}) \approx l(\underline{\mathbf{x}})$

Diagram of system's use after training Carnegie Mellon Africa

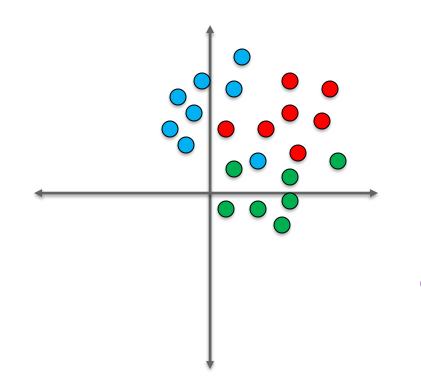
- An object from the domain is selected by the system
 - Example: a music clip is captured by a microphone



Visualizing performance

 Assume the feature vector is two dimensional (2D) and there are 3 classes.

 The points below represent instances in the instance space (red: class 1, green: class 2, blue: class 3)



These points correspond to feature vectors

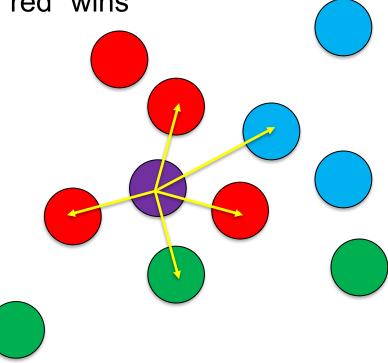
NOTE: The mapping of domain objects to feature vectors may <u>not</u> be 1-to-1 (invertible)

K-nearest neighbor classification

Carnegie Mellon Africa

- To classify the unknown purple object we look at the classes of its k nearest neighbors (e.g. k=5) and take a majority vote
 - In this example, "red" wins

This algorithm requires the notion of a *distance* between feature vectors



K-nearest neighbor classification

Carnegie Mellon Africa

- Armed with a "distance" the following algorithm is sometimes practical
 - To classify instance <u>x</u>
 - Compute the distance between <u>x</u> and each element of the training set
 - Determine its k nearest neighbors in the training set (k can be 1)
 - \checkmark Assign to <u>x</u> the majority class of its *k*-nearest neighbors

Assessing Classification Performance

Carnegie Mellon Africa

Create a confusion matrix

Use the matrix to estimate useful probabilities

		class 1	Predicted class outputs class 2	class 3	
					Total in tes set
	class 1	80	10	8	98
Test set	class 3	5	00	c	101
inputs	class 2	5	90		
	class 3	1	3	75	7

 Note: the highlighted values represent correct classifications

Assessing Performance

Accuracy

Estimates the probability

$$P(\hat{l}(\underline{\mathbf{x}}) = l(\underline{\mathbf{x}}))$$

✓ Add the diagonal entries of the matrix and divide by the sum of all entries. For the previous matrix we get 245/278 = 88%

Error rate

Estimates the probability

$$P(\hat{l}(\underline{\mathbf{x}}) \neq l(\underline{\mathbf{x}}))$$

 \checkmark One minus the accuracy. In our example, 33/278 = 12%

CAUTION! In an unbalanced environment, the accuracy may be meaningless. You might get high accuracy just by always outputting the most probable value!

Assessing Performance

Terminology to describe a model's performance <u>with respect to</u> <u>a given class</u>:

- True Positive (TP): A *correctly* accepted instance of the class
- False Positive (FP): An *incorrectly* accepted non-instance of the class
- True Negative (TN): A correctly rejected non-instance of the class

✓ However, the rejected instance may or may not be correctly classified with respect to the remaining classes!

• False Negative (FN): An *incorrectly* rejected instance of the class

Assessing Performance

Precision

 For a given class, it estimates the percentage of positive class identifications that are actually members of that class

 $Precision = \frac{TP}{TP + FP}$

Recall

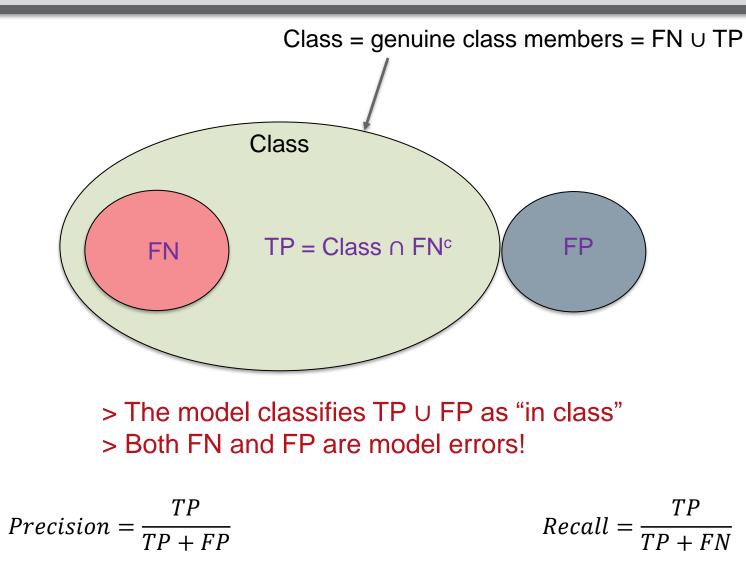
 For a given class, it estimates the percentage of that class's members that will be correctly classified

$$Recall = \frac{TP}{TP + FN}$$

These metrics are often more useful than accuracy and error rate for an unbalanced training set

Visualizing Precision and Recall

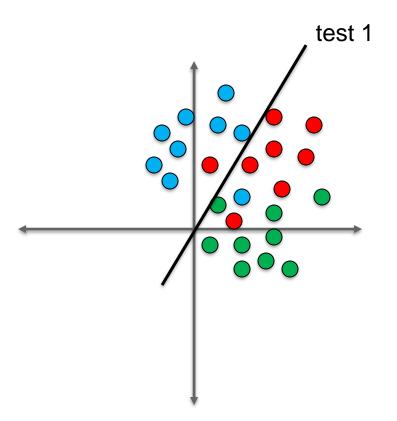
Carnegie Mellon Africa



Separating points in instance space

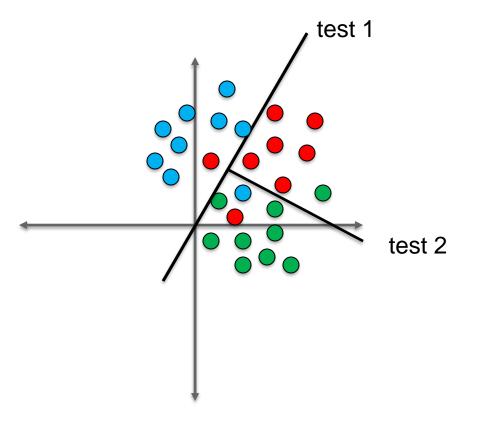
Carnegie Mellon Africa

- One approach—learn lines that separate instances into classes
 - First, separate one class from the rest



Separating the points

Second: separate the mixed class into two classes

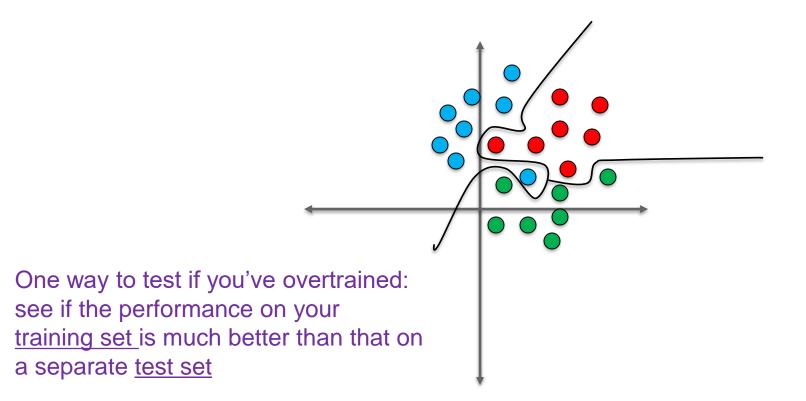


 "Support Vector Machines" (SVMs) can be used to find a line that separates two classes

Overtraining

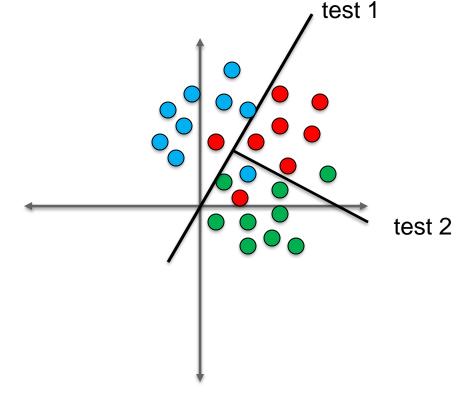
 Danger—adapting your function too strongly to your training set

 Trying too hard to solve the outlier problem may yield a bad solution that doesn't generalize



What if the feature vector is 3D or higher? Carnegie Mellon Africa

In higher dimensional spaces we learn a hyperplane not a line



Conceptually, there is no difference!

Using the data wisely

- Given a single labeled set of data, how should one proceed?
 - One option
 - ✓ Shuffle the data
 - \checkmark Divide it into a training set and a test set
 - Divisions of 70% / 30% and 80% / 20% are common
 - \checkmark Learn the classification function using the training set
 - \checkmark Assess the model's performance using the test set
 - Another more complicated option is k-fold cross validation

Neural Networks

"A single neuron in the brain is an incredibly complex machine that even today we don't understand. A single 'neuron' in a neural network is an incredibly simple mathematical function that captures a minuscule fraction of the complexity of a biological neuron." (Andrew Ng, AI Guru)

- Sometimes the goal is to assign a <u>real number</u> to an instance
- We call this type of prediction <u>regression</u>, and typically differentiate it from classification
 - Example
 - ✓ Given the earlier person feature vector (*H*, *W*, *L*_h, *L*_n, *L*_f)
 - (Height, Weight, Length_hair, Length_nose, Length_foot)
 - ✓ Predict the *interocular_distance* (the distance between the eyes)

NN's are capable of regression and classification

Using Regression to Classify

- Assume the feature vectors are of dimension N
- Assume there are C classes {1, 2, ..., C}
- Assign the integer *i* to every instance of class *i*
 - Use the TS to learn a real-valued function, f

$$f \colon \mathbb{R}^N \mapsto \mathbb{R}$$

• Roundoff the real output to an integer in $\{1, 2, ..., C\}$

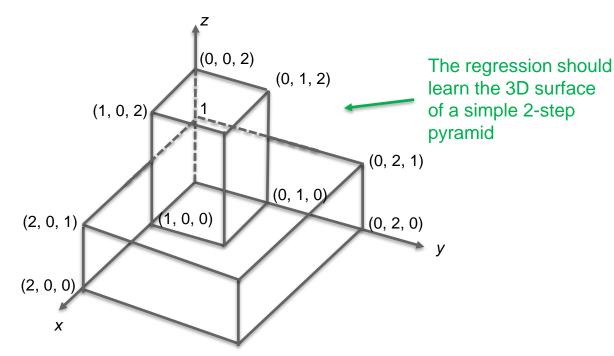
Using Regression to Classify

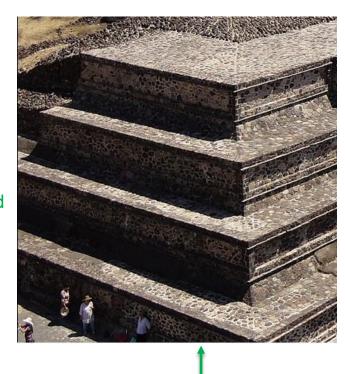
Carnegie Mellon Africa

Example (binary classification)

Assume:

- 2D feature vectors (x,y)
- All class two instances lie <u>inside</u> the square of size one in the (x,y) plane
- All class one instances lie <u>inside</u> the square of size two and <u>outside</u> the square of size one



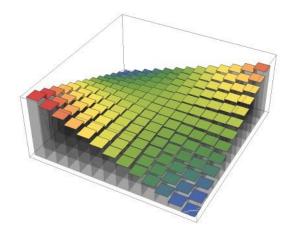


4-step pyramid

Using Regression to Classify

What's the point?

- It can be shown that any continuous function can be approximated by a suitable NN
 - Classifier step functions can be approximated by continuous functions
 - Result: arbitrarily complex classifiers can be learned by an NN
 - » So we can treat classification as a regression problem on one variable



But this approach is not used in practice!

A Better Approach

- Learn C functions total, one for each class
- The learning goal for each class's function is...
 - ...take the value 1 on domain instances that are in the class
 - ...take the value 0 on domain instances that are not in the class

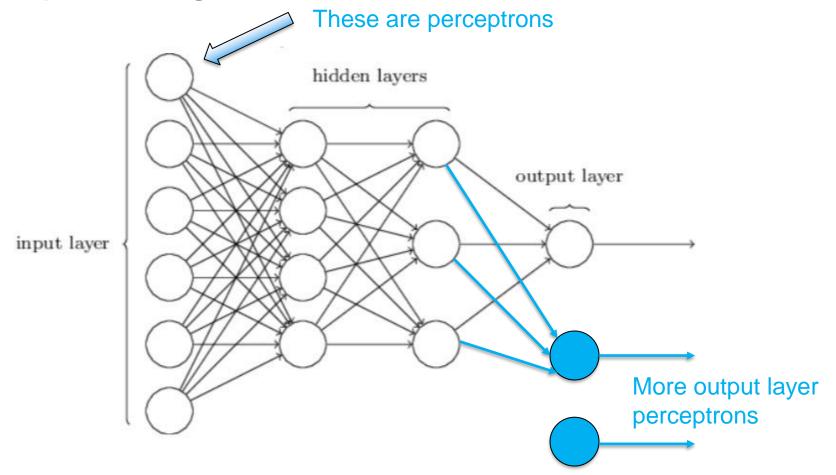
Another perspective

 The NN learns <u>one function</u> from *N*-dimensional space to C-dimensional space

$$f\colon \mathbb{R}^N \mapsto \mathbb{R}^C$$

Neural Network Diagram

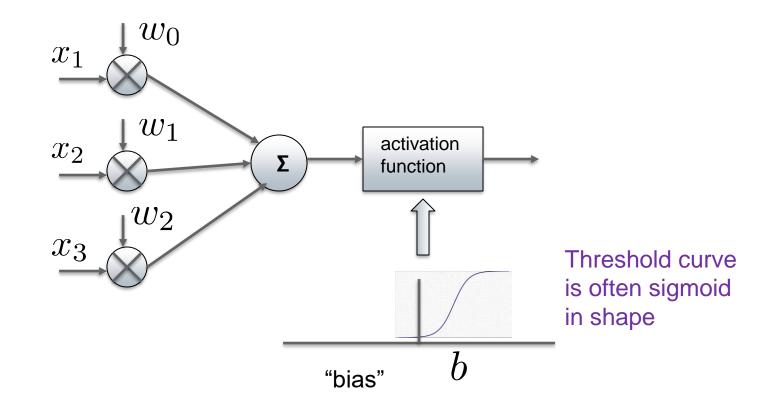
 Neural networks are built by connecting a basic unit, perceptrons, together



The Perceptron's calculation

Carnegie Mellon Africa

A perceptron computes the dot product of its input vector, <u>x</u>, with its weights, <u>w</u>, and thresholds the result with respect to a bias, <u>b</u>



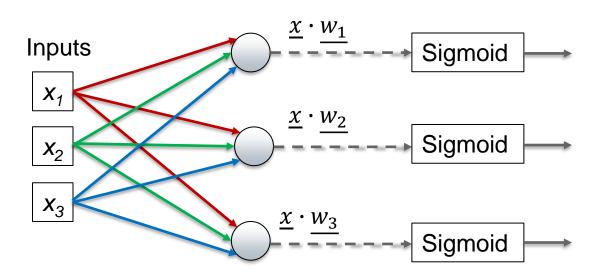
Neural Networks for classification

Carnegie Mellon Africa

- Perceptrons are the neurons of neural networks
- Each perceptron has parameters
 - Input weights
 - bias
- The output of a perceptron can be an input to many downstream perceptrons
- The perceptrons' parameters are optimized by training the network
 - This is how the network learns

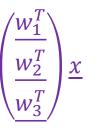
Dot Products and Perceptron Inputs

Carnegie Mellon Africa



Perceptrons

Here's a compact representation of these 3 dot products



Matrix notation and linear algebra are core ML math tools

- Assume an object's class, y, will be predicted using a feature vector, <u>x</u>
- The training set (whose instances are indexed by i)

$$\mathcal{T} = \{(x_{i1}, x_{i2}, \dots, x_{iN}, y_i)\}$$

Each instance vector has N features

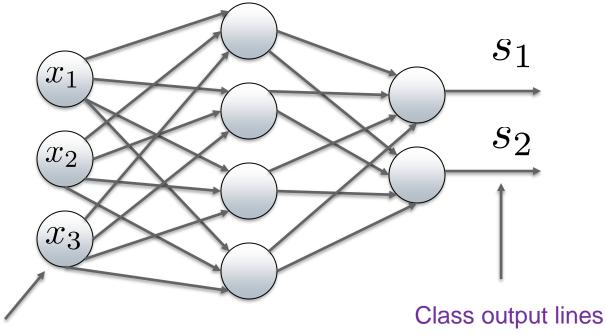
For an image, each feature might be a pixel intensity

Neural Network Classification

Carnegie Mellon Africa

There is one output per class

The largest output value indicates the predicted class



Input feature vector values

Neural network training overview

Carnegie Mellon Africa

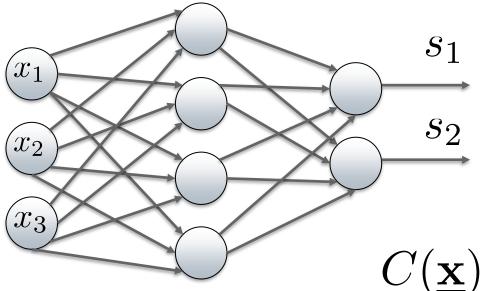
- The perceptrons' weights and biases are iteratively adjusted using the training sequence
 - Many passes through the training sequence are necessary
- A gradient descent algorithm is often used to find good weights and biases
 - We are searching through a high-dimensional space for a good parameter set
- The back-propagation algorithm is used to compute the gradient

A possible cost function for optimization

Carnegie Mellon Africa

The network has one output for each class

The largest output value indicates the predicted class



Let the network's output when \underline{x} is applied be $\underline{s}(\underline{x})$

Let $\underline{l(\mathbf{x})}$ be a vector with 1 in the position of the true class

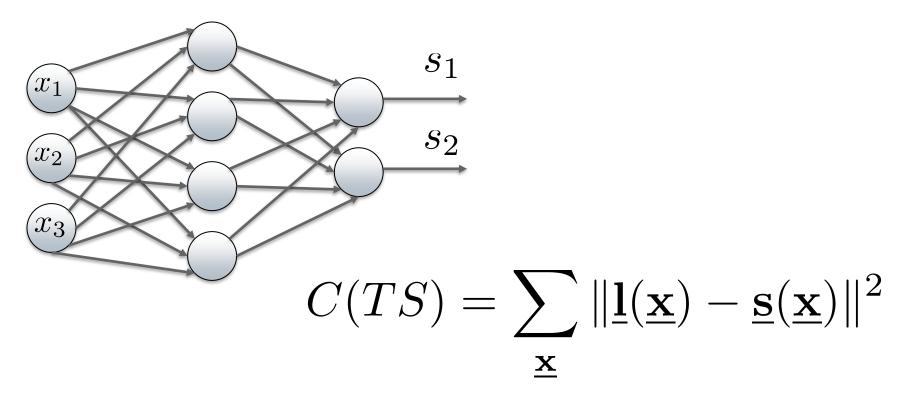
A possible cost function for \underline{x} is

$$C(\underline{\mathbf{x}}) = \|\underline{\mathbf{l}}(\underline{\mathbf{x}}) - \underline{\mathbf{s}}(\underline{\mathbf{x}})\|^2$$

In the example above, for instances in class one, $\underline{I}(\underline{x}) = (1, 0)$ and for instances in class two, $\underline{I}(\underline{x}) = (0, 1)$

Cost function continued...

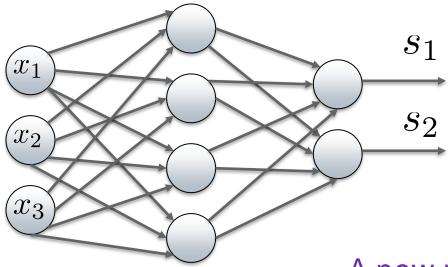
To obtain the overall cost function we sum over all instances in the TS



We seek a set of weights and biases to minimize C(TS)

A better cost function

We can normalize the class scores first to get an output vector that looks like probabilities



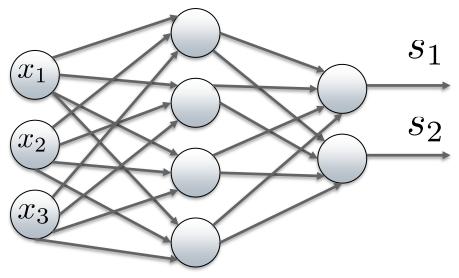
Define Softmax function $p_k = \frac{e^{s_k}}{\sum_{i} e^{s_j}}$

A new possible cost function

$$C(TS) = \sum_{\underline{\mathbf{x}}} \|\underline{\mathbf{l}}(\underline{\mathbf{x}}) - \underline{\mathbf{p}}(\underline{\mathbf{s}})\|^2$$

Another cost function!

A commonly used cost function, based on maximum likelihood estimation, is the cross entropy (it involves logarithms)



TensorFlow / Keras Concepts

Training a neural network classifier involves iterative processing of the training set

One complete pass through the training set is called an <u>epoch</u>

The number of training epochs is a user-definable parameter

history = model.fit(inputs_train, outputs_train, epochs=10, \ validation_data=(inputs_validate, outputs_validate))

Model Parameter Training

Carnegie Mellon Africa

Performance issue

 If the entire TS is processed before making an adjustment to the model's parameters, training can be very slow

Solution

 Process only a *batch* of instances from the TS before updating the model

TensorFlow / Keras Concepts

Carnegie Mellon Africa

- Epochs are broken up into mini batches (or simply batches)
- Mini-batch size
 - Defaults to 32
 - Can be explicitly controlled if desired

Model updates are performed after processing one minibatch of instances from the TS

TensorFlow / Keras Concepts

Epoch and mini-batch view during training

In this example, there are 1875 mini batches (1875*32 = 60,000 instances in TS)

Current mini-batch being processed is indicated on screen (in this case 1424)

Current epoch and total number of desired epochs are also displayed

Loss function and metric

 Training searches for network parameters to (hopefully) minimize some loss function

- The parameters are the perceptron weights and biases
- No guarantee a global minimum will be found!
- Different loss functions are used

Model performance is assessed using some *metric*

- metric: "a system or standard of measurement"
- The loss function and the metric can be <u>different</u>
 ✓ Example:
 - Loss function: "cross entropy"
 - Metric: "accuracy"

Why May Loss and Metric Differ?

Carnegie Mellon Africa

Consider the accuracy of a classifier

- Two models may have the same accuracy when trained on the same TS
- One model may still be better w.r.t the loss function!
 - We would expect the lower loss model to generalize better to instances outside the training set
- The desired metric may also be discontinuous and hard/impossible to differentiate

✓ Gradient descent needs derivatives

Eventually the Model is Deployed!

```
Carnegie Mellon Africa
```

- The compute resolution of the ML inference engine may be important! It might impact...
 - ...the <u>final error</u> in a regression
 - ...the <u>performance</u> of a classification
 ✓ What if fewer bits are used in every computation?

- ...the <u>memory</u> required by the inference engine
 - \checkmark Fewer bits per number means less storage is needed for parameters
- ...the <u>speed</u> of performing an ML inference
 ✓ e.g. integer vs floating point arithmetic
- ...the *power consumption* of the inference engine
 ✓ less computation consumes less energy

Welcome to the world of model quantization and TinyML

A Final Caution About Learning

"In our reasonings concerning matter of fact, there are all imaginable degrees of assurance, from the highest certainty to the lowest species of moral evidence. <u>A wise</u> <u>man, therefore, proportions his belief to the</u> <u>evidence</u>"

David Hume, 18th century philosopher

Carnegie Mellon Africa

Reference Material

Convolutional Neural Networks for Machine Vision

"Circumstantial evidence is a very tricky thing. It may seem to point very straight to one thing, but if you shift your own point of view a little, you may find it pointing in an equally uncompromising manner to something entirely different" (Arthur Conan Doyle, 19th Century creator of Sherlock Holmes)

CNNs at 100k Feet

- CNNs are very similar to ordinary neural networks
 - Processing occurs in layers
 - Some layers are perceptron based and have learnable parameters
 - The final layer produces class scores which are fed to a realvalued loss function
 - Training is via gradient descent
- So what's different?
 - Some new *non-parameterized* layer types are used
 - We do *NOT* fully connect all layers
- History: first successful applications were in the 1990s, e.g. to read postal codes

- Assume the input image has R rows, C columns, and D color planes
 - We'll assume D = 3 (i.e. RGB)
- Refer to R and C as the spatial dimensions, and D as the depth dimension
- Think of each CNN layer as processing an input volume into an output volume
- CNN Layer types
 - Input
 - Convolution
 - RELU (Rectified Linear Unit)
 - Pooling
 - Fully Connected

- Imagine the input image as a set of three 2-D planes stacked side-by-side
 - One plane for each color channel, e.g., RGB
- There is one input layer perceptron for each RGB pixel
 - Each perceptron's output is a pixel intensity (R, G, or B)
- The input layer is therefore a 3-D volume of perceptrons

R G B

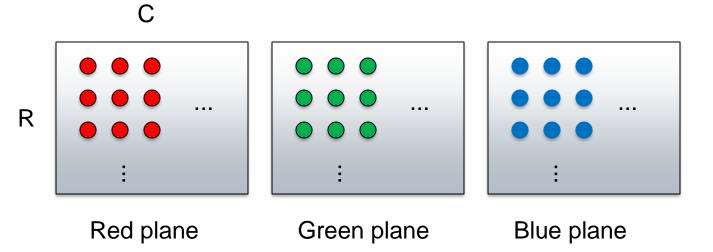
Input Layer Unstacked

Unstacked

input layer

planes

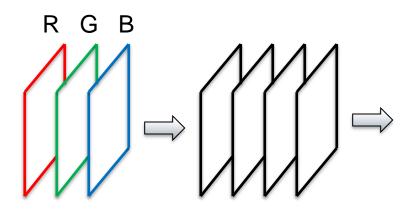
A view of the perceptrons in the RGB color planes, one perceptron per pixel



Convolution Layer

A convolution layer is a 3D volume of perceptrons

- The activation function of these perceptrons is f(x) = x
 - ✓ Contrast this with a sigmoid. f(x) = x allows a convolution to be computed
- A convolutional layer comprises multiple processing planes
 - There is one plane for each filter being trained



Input layer (3 color planes) Convolution layer (4 filters)

Convolution Layer

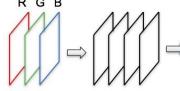
The perceptrons in a convolutional layer plane are NOT fullyconnected to each pixel in the preceding layer

 Each connects only to a limited co-located spatial region for example, 3x3xD or 5x5xD

✓ Note that connection is made to all the perceptrons in the depth dimension (e.g. to all the color planes in the input layer)

The perceptron weights and biases are trainable, but...

ALL perceptrons in the same filter plane use IDENTICAL parameters

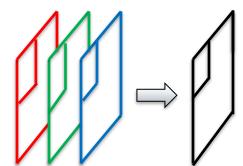


Input layer Cor (3 color planes) layer

Convolution layer (4 filters) The activation function of a perceptron in a convolutional layer is f(x) = x

Connections to Filter Plane

 All the perceptrons in the indicated regions in the RGB planes connect to the center perceptron of the co-located region in the filter plane
 R G B



Input layer (3 color planes)

С

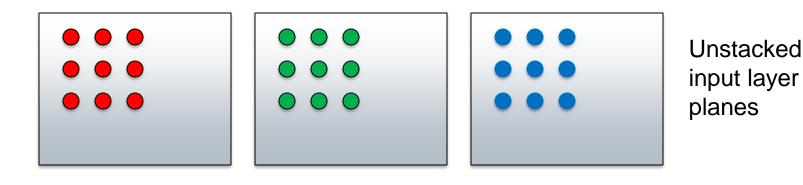
Convolution layer (1 filter)

R				
	:	:	:	:

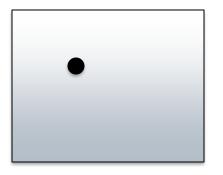
These 27 pixels connect to.....this pixel in the filter plane!

Connections: Another View

 All the RGB perceptrons below connect to the black filter plane perceptron



One perceptron in one filter plane

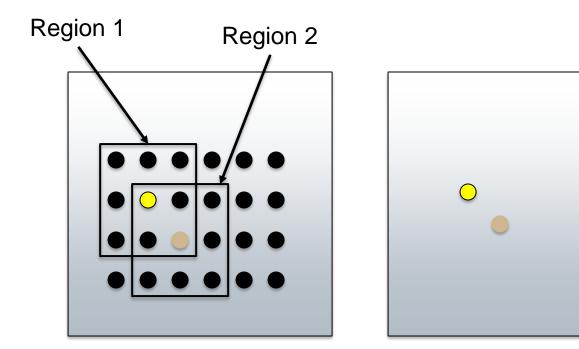


This perceptron is connected to the 27 perceptrons shown in the 3D input volume above

It is the center of the co-located region of the filter plane

Spatial Overlap

 Filter plane perceptrons connect to overlapping spatial regions in the preceding layer



Region 1 perceptrons connect to the yellow perceptron on the right, region 2 perceptrons to the brown one

Since all perceptrons in a filter plane have the same weights, this implements a convolution

preceding layer depth planes

convolution layer filter plane

Convolution Layer Output Volume

Carnegie Mellon Africa

- Usually the spatial dimensions of a filter plane are the same as the spatial dimensions of the preceding layer
 - (We're ignoring edge effects. Padding, etc. may be necessary)
- It is possible to sub-sample when building a filter plane, resulting in smaller spatial dimensions
 - ✓ Example: to downsample by 2 in the previous example, only connect every other set of 3x3 regions in the input layer to a filter plane (can do this in both spatial dimensions)
 - Caution: this is <u>not</u> recommended practice, it is better to use pooling! (But it will be more computationally expensive)

Pooling Layer

- Reduces the volume of a preceding layer, thereby reducing the computation of subsequent layers
 - Helps prevent overfitting since it reduces resolution
- From a DSP perspective, pooling is downsampling
 - Factor of 2 is most common
- MAX pooling is common
 - Outputs the maximum value among its several inputs
 - Note this layer is <u>non-parameterized</u> and therefore unaffected by training
- The depth dimension is preserved...every depth plane is downsampled independently

Pooling Layer Illustrated

Below illustrates MAX pooling in regions of size 2x2

Values before MAX pooling

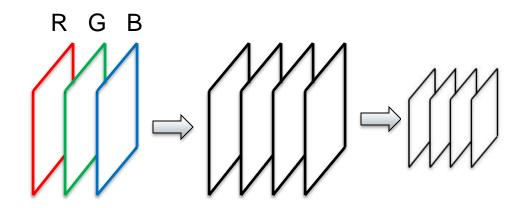
1214918

Values after 2x2 max pooling

The MAX function looks at its input values and outputs the largest

Layer Connections

Below shows input / convolution / pooling layers



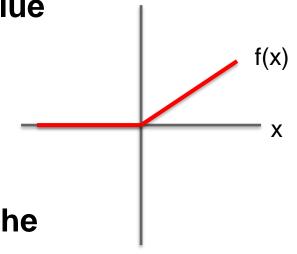
Input layer (3 color planes)

Convolution layer (4 filters)

2x2 Pooling layer (4 planes)

RELU Layer

- Applies a non-linearity to each value
 - f(x) = max(0, x)
- Non-parameterized
- Each "Rectified Linear Unit" connects to exactly one value in the preceding layer's output volume
- The output volume of a RELU layer equals its input volume



Fully Connected Layer

Each perceptron in an FC layer connects to ALL the values in the preceding layer's output volume

This is like ordinary neural networks

When classifying

- The final layer is FC
- It has as many perceptrons as there are classes
- We can visualize this final layer as a 1 x 1 x C output volume where C is the number of classes

Typical Layer Structures

From Stanford course notes for CS231n "Convolutional Neural Networks for Visual Recognition"

INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC

where the \star indicates repetition, and the **POOL**? indicates an optional pooling layer. Moreover, **N** >= 0 (and usually **N** <= 3), **M** >= 0, **K** >= 0 (and usually **K** < 3). For example, here are some common ConvNet architectures you may see that follow this pattern:

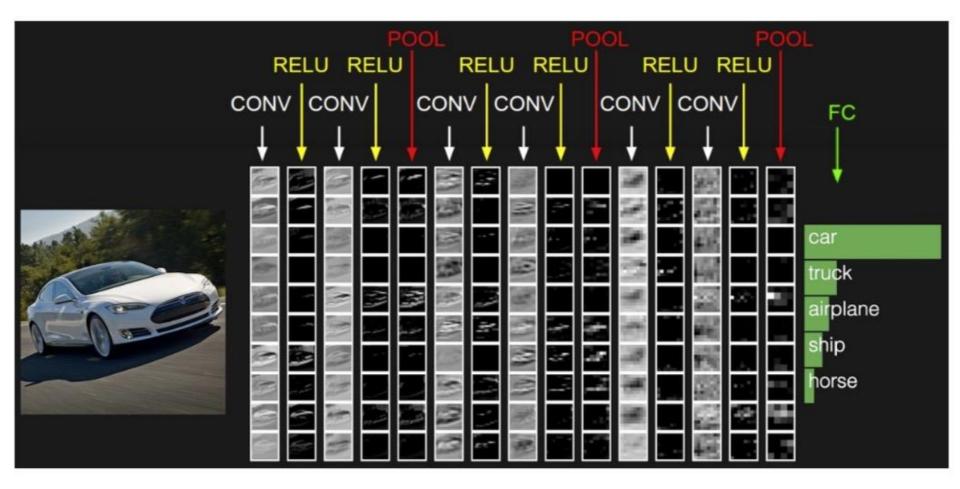
- INPUT -> FC, implements a linear classifier. Here N = M = K = 0.
- INPUT -> CONV -> RELU -> FC
- INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU -> FC. Here we see that there is a single CONV layer between every POOL layer.
- INPUT -> [CONV -> RELU -> CONV -> RELU -> POOL]*3 -> [FC -> RELU]*2 ->

FC Here we see two CONV layers stacked before every POOL layer. This is generally a good idea for larger and deeper networks, because multiple stacked CONV layers can develop more complex features of the input volume before the destructive pooling operation.

http://cs231n.github.io/convolutional-networks/

Example Layer Structures

For recognizing vehicle types



Why Repeat CONV->RELU layers?

Carnegie Mellon Africa

Allows a larger extent of the image to be analyzed

- Assume first CONV layer is 3x3
- A second 3x3 CONV layer processes the first CONV layer's output and operates on a region of size 5



In this 1-D example, the second convolution layer is processing data over a width of 5 input values

Some Rules of Thumb

- Input layer should be divisible by 2 many times
- Use 3x3 or 5x5 filters in the CONV layers and do not use them to sub-sample (use POOL layers for this)
 - Zero-pad at image edges so that CONV layer spatial extent equals that of its input layer
- Use MAX for the POOL function in a 2x2 region as shown previously
 - People have experimented with averaging, for example, but MAX works better

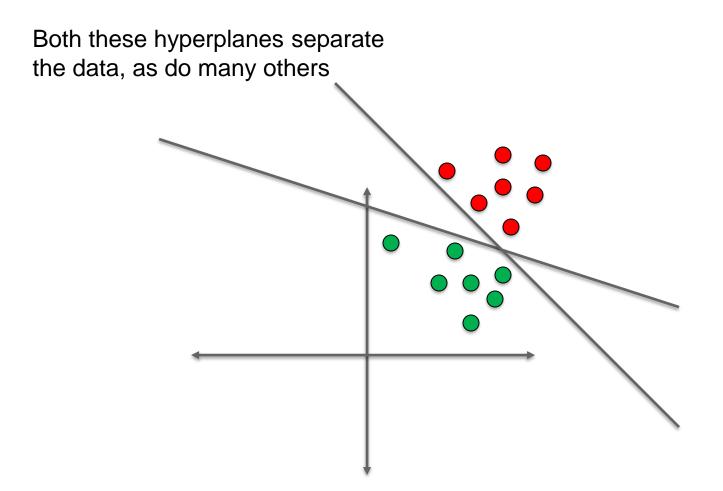
Carnegie Mellon Africa

SVM's Conceptually

What if there are many separating hyperplanes?

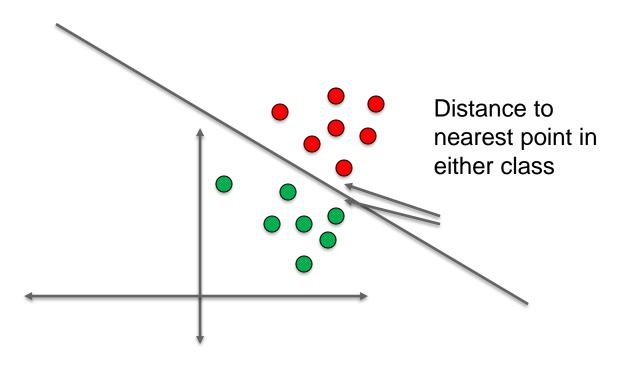
Carnegie Mellon Africa

When the separating hyperplane is not unique, which one should we choose?



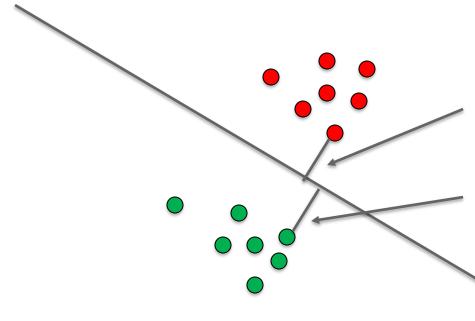
Solution: pick the one that *maximizes the margin* Carnegie Mellon Africa

- Choose the hyperplane that maximizes the minimum distance to any point in either set
 - Twice this minimum distance is called the "margin"



The SVM hyperplane

A zoomed in picture of the previous slide



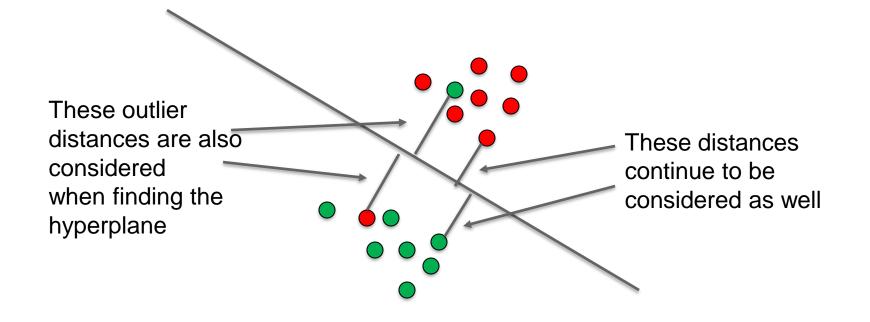
The best hyperplane will be equally distant from the nearest point in each cluster.

Otherwise, moving it one way or the other will increase the minimum distance!

What if the data isn't linearly separable?

Carnegie Mellon Africa

A different more complicated optimization can be performed that takes into account outliers

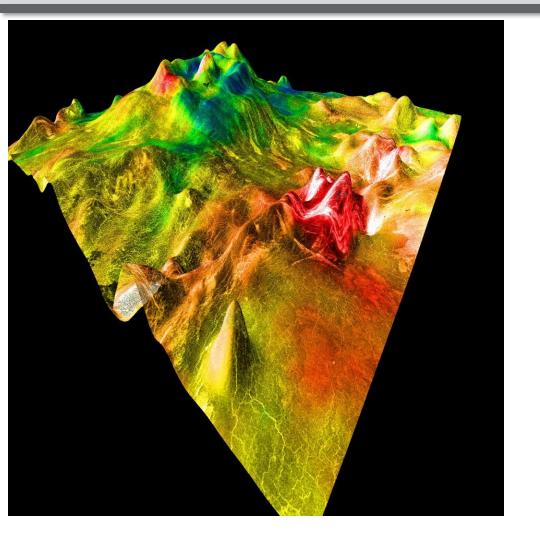


Carnegie Mellon Africa

Gradient Descent Optimization

A complex 3-D surface

Carnegie Mellon Africa



Imagine starting at the highest point in this picture.

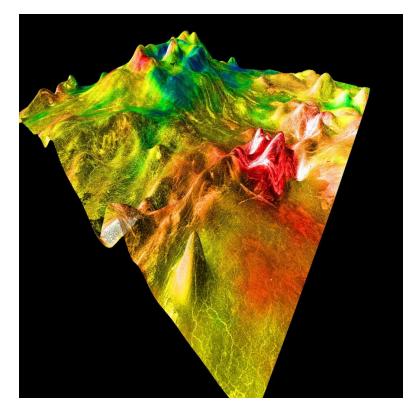
You can only see the area in your immediate vicinity.

How can you find your way down as fast as possible?

Venus volcano (Smithsonian Institution image)

A complex 3-D surface

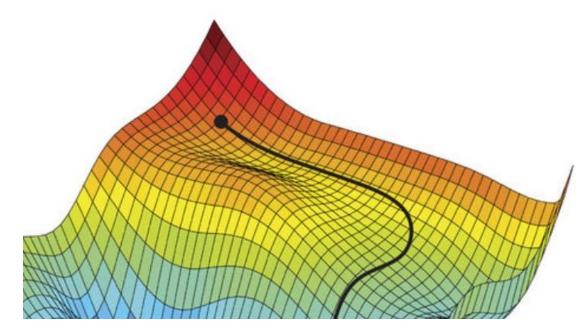
- What path would a stream of water follow?
 - At each point, it would move downhill in the steepest direction



Water flowing illustration

Carnegie Mellon Africa

The water finds its way downhill quickly...at least we hope!

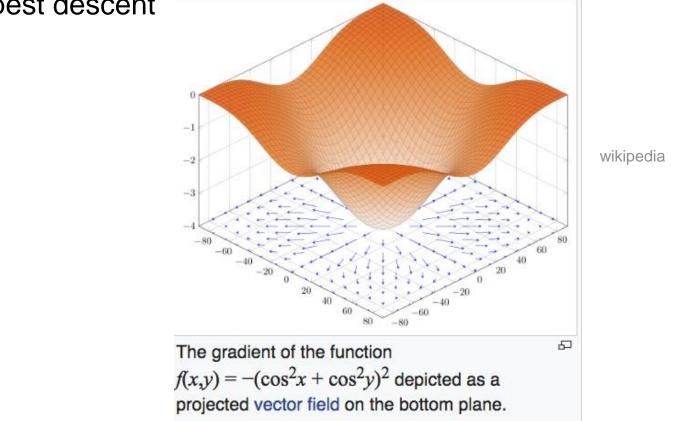


https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy

The Gradient

The vector pointing in the direction of steepest increase at each point is the gradient

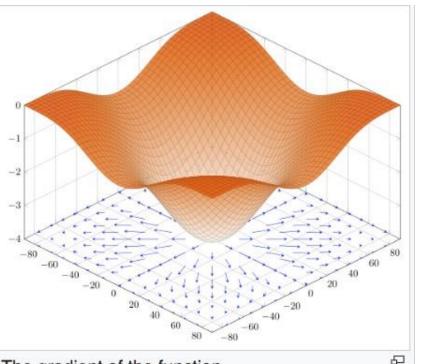
The *negative* of the gradient points in the direction of steepest descent



The Gradient Vector

- The gradient is computed using partial derivatives
- The gradient of f(x,y) is given by

$$\nabla_f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$



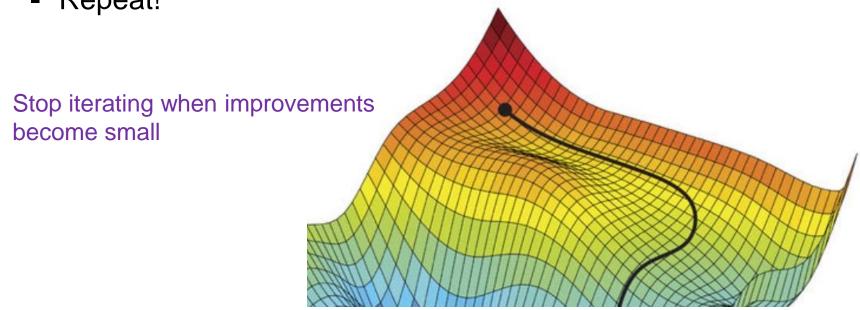
The gradient of the function $f(x,y) = -(\cos^2 x + \cos^2 y)^2$ depicted as a projected vector field on the bottom plane.

The Descent Algorithm

Carnegie Mellon Africa

At each point

- Compute the gradient vector
- Move a short distance in the opposite direction
- Repeat!



https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy

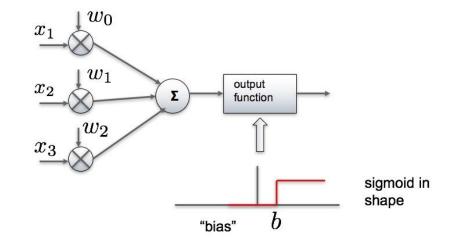
Neural network gradient descent

Carnegie Mellon Africa

The function being minimzed is the total cost

```
C(TS)
```

The variables are the percpetron weights and biases



The Back propagation Algorithm

Carnegie Mellon Africa

- The partial derivatives are computed using the back propagation algorithm
 - Details are covered in other classes at CMU
- The distance moved each step controls how fast the network learns
 - Moving too far each step may cause oscillation or prevent convergence
- Each gradient descent step is called a model update

Stochastic Gradient Descent

Complication

 If the entire TS is used to estimate the gradient before taking a downhill step, convergence can be very slow

Solution

 Estimate the gradient using just a few instances from the TS before updating the model

✓ This is called *mini-batch gradient descent*

Sometimes the mini-batch size is set to one

 ✓ This is called stochastic gradient descent

Note that both mini-batch gradient descent and stochastic gradient descent only estimate the true gradient before updating the model parameters